

GUIA DE ORIENTAÇÃO NA AVALIAÇÃO AUDIOLÓGICA

 $\mathsf{vol}.\mathbf{1}$

Audiometria tonal limiar, logoaudiometria e medidas de imitância acústica

Sistema de Conselhos de Fonoaudiologia

GUIA DE ORIENTAÇÃO NA AVALIAÇÃO AUDIOLÓGICA

Volume I

Audiometria tonal limiar, logoaudiometria e medidas de imitância acústica

ELABORAÇÃO:

Sistema de Conselhos de Fonoaudiologia

Revisão técnica:

Comissão de Audiologia do 14° Colegiado do Conselho Federal de Fonoaudiologia

Raimundo de Oliveira Neto – CRFa 6-1361

Carla Aparecida de Vasconcelos – CRFa 6-6464

Karla Geovanna Moraes Crispim - CRFa 9-6553-5

Patrícia Monteiro de Barros Lopes – CRFa 2-5112

Wagner Teobaldo Lopes de Andrade – CRFa 4-7832

Revisão textual:

Ana Cristina Paixão

Colaboração:

Sociedade Brasileira de Fonoaudiologia

Academia Brasileira de Audiologia

JULHO

2023

Sumário

1	INTRODUÇAO	7
2	ASPECTOS LEGAIS	8
3	AVALIAÇÃO AUDIOLÓGICA	.10
	3.1 Audiograma e Simbologia	.11
	3.2 Resultado Audiológico	.15
	3.3 Weber Audiométrico	. 28
	3.4 Audiometria Vocal ou Logoaudiometria	.30
	3.5 Medidas de Imitância Acústica	.30
	3.5.1 Timpanometria	.31
	3.5.2 Reflexo Acústico	.33
4	AUDIOLOGIA INFANTIL	.34
5	CONSIDERAÇÕES ACERCA DA AUDIOMETRIA TONAL DE ALTAS FREQUÊNCIAS (ATF)	. 38
6	CONSIDERAÇÕES ACERCA DA AUDIOMETRIA NA SAÚDE DO TRABALHADOR	
7	LAUDO AUDIOLÓGICO	.42
	7.1 Audiometria Tonal	.43
	7.2 Medidas de Imitância Acústica	.45
8	REFERÊNCIAS	.46

I INTRODUÇÃO

A avaliação audiológica é norteada por procedimentos e técnicas validados e reconhecidos cientificamente, que visam garantir a qualidade do exame e a segurança do cliente.

Frequentemente, os Conselhos de Fonoaudiologia são consultados por fonoaudiólogos de diversas regiões do Brasil, em busca de esclarecimentos sobre o registro de resultados de exames audiológicos. Esses questionamentos também são recorrentes nas ações de fiscalização dos Conselhos Regionais em serviços de Audiologia.

Com o objetivo de orientar os fonoaudiólogos na elaboração e interpretação dos resultados dos exames audiométricos e imitanciométricos dentro dos princípios técnico-científicos, legais e éticos, as Comissões de Audiologia do Sistema de Conselhos de Fonoaudiologia, em parceria com a Academia Brasileira de Audiologia e o Departamento de Audição e Equilíbrio da Sociedade Brasileira de Fonoaudiologia, desenvolveram e vêm revisando e atualizando este Guia.

Esta atualização foi realizada com o objetivo de trazer ajustes imperativos nas referências, bem como a atualização das evidências científicas disponíveis.

Esperamos que, com esta leitura, você, fonoaudiólogo, possa dispor de elementos e conhecimentos que o auxiliem quanto ao registro dos resultados da avaliação audiológica em suas rotinas clínicas, bem como para fins de pesquisa.

Por fim, o Conselho Federal de Fonoaudiologia (CFFa) orienta os fonoaudiólogos a adotarem sempre a versão mais atual do Guia. As versões anteriores estão, portanto, expressamente revogadas.

Boa leitura!

2 ASPECTOS LEGAIS

"Fonoaudiólogo é o profissional, com graduação plena em Fonoaudiologia, que atua em pesquisa, prevenção, avaliação e terapia fonoaudiológicas na área da comunicação oral e escrita, voz e audição, bem como em aperfeiçoamento dos padrões da fala e da voz" (Brasil, 1981).

Além disso, a Constituição Federal, em seu art. 5°, ao tratar dos direitos e deveres individuais e coletivos, estabeleceu, no inciso XIII, a liberdade do "exercício de qualquer trabalho, ofício ou profissão, atendidas as qualificações profissionais que a lei estabelecer" (Brasil, 1988).

O fonoaudiólogo possui amparo legal que garante sua atuação profissional de forma plena, ética e autônoma. Sendo assim, tem o dever de conhecer as normativas de sua profissão, principalmente as que se referem diretamente à sua prática profissional.

A seguir estão elencadas algumas das fontes legais acerca da atuação do fonoaudiólogo em Audiologia.

- Lei n.º 6.965/1981, que dispõe sobre a regulamentação da profissão de fonoaudiólogo e define, no art. 4º, suas competências.
- Código de Ética da Fonoaudiologia, que regulamenta os direitos e os deveres, e estabelece as infrações éticas dos fonoaudiólogos
- Demais normativas emanadas pelo Conselho Federal de Fonoaudiologia (CFFa), disponíveis em: www.fonoaudiologia.org.br.

- Normativas do Ministério da Saúde.
- Normativas dos demais ministérios do governo federal, em especial, a Portaria SEPRT n.º 6.734, de 9 de março de 2020, que substituiu a Portaria SSST n.º 19, de 9 de abril de 1998, contida na Norma Regulamentadora do Trabalho n.º 7 (NR-7).

Consulte com frequência os portais do Conselho Federal e dos Conselhos Regionais de Fonoaudiologia para manter-se atualizado acerca das legislações e normativas vigentes.

3 AVALIAÇÃO AUDIOLÓGICA

A avaliação audiológica tem como objetivo principal verificar a integridade do sistema auditivo. Havendo perda auditiva, contribui para o diagnóstico diferencial entre os quadros patológicos auditivos e fornece informações fundamentais ao processo de tratamento e/ou reabilitação (Amaral; Momensohn-Santos, 2022).

O processo de avaliação audiológica deve ser, obrigatoriamente, precedido por uma inspeção do meato acústico externo e uma anamnese ou entrevista.

Na ficha audiológica, devem constar:

- identificação, endereço e telefone da empresa/profissional prestador(a) do serviço;
- identificação com nome e número de inscrição no CRFa conforme a resolução que "dispõe sobre a regulamentação de normas para o registro profissional no âmbito dos Conselhos Regionais de Fonoaudiologia e dá outras providências", bem como rubrica ou assinatura do profissional responsável pelo exame (CFFa, 2021);
- dados pessoais do examinado contendo nome completo, data de nascimento, sexo e número do cadastro de pessoa física (CPF). No caso de avaliação auditiva ocupacional, incluir função do trabalhador/empregado;
- data da realização do exame;
- modelo, marca e data de calibração dos equipamentos;
- achados sobre a inspeção do meato acústico externo, constando se há ou não impedimento para a realização da avaliação audiológica;

- título que informe o tipo de exame que está sendo realizado;
- gráfico do audiograma, conforme descrição a seguir, em caso de audiometria tonal;
- resultado audiológico.

A anamnese é um procedimento importante na avaliação audiológica, devendo constar apenas no prontuário e não na ficha audiológica.

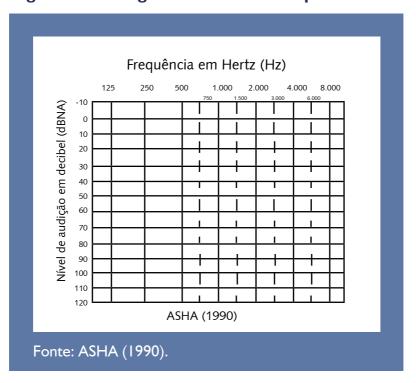
3.1 Audiograma e Simbologia

A audiometria tonal (limiar) é o exame padrão-ouro para o processo de diagnóstico audiológico e determina os limiares auditivos comparando os valores obtidos com os padrões de normalidade, usando como referência o tom puro.

A audiometria tonal (limiar) tem como objetivo a mensuração da sensibilidade auditiva, que permite a determinação de tipo, grau e configuração da perda auditiva, fornecendo uma base para diagnóstico, acompanhamento e intervenção (Amaral; Momensohn-Santos, 2022).

Os limiares auditivos obtidos devem ser dispostos e representados graficamente no audiograma, usando o sistema de símbolos padronizados recomendados pela ASHA (American Speech-Language-Hearing Association), conforme o Quadro I (1990).

É dever do fonoaudiólogo portar o documento de identificação profissional conforme resolução vigente.


O audiograma deve ser construído como uma grade, na qual as frequências, em Hertz (Hz), estejam representadas em escala logarítmica no eixo da abscissa, e o nível de audição (NA), em decibel (dB), no eixo da ordenada.

Para garantir a dimensão padronizada do audiograma:

- cada oitava na escala de frequências deve ser equivalente ao espaço correspondente a 20 dB na escala do nível de audição;
- o eixo da abscissa deve incluir as frequências de 125 Hz a 8.000
 Hz, com a legenda de "Frequência em Hertz (Hz)"; e
- o eixo da ordenada deve incluir níveis de audição de -10 dB a 120 dB NA, com a legenda de "Nível de Audição em Decibel (dB NA)".

O audiograma e o sistema de símbolos recomendados pela ASHA (1990) encontram-se na Figura I e no Quadro I, respectivamente.

Figura I - Audiograma recomendado pela ASHA

Quadro I – Conjunto de símbolos audiométricos recomendados para o registro das respostas obtidas na pesquisa de limiares de audibilidade

	PROCEDIMENTO DE TESTE	ORELHA DIREITA	ORELHA ESQUERDA
	Presença de resposta não mascarada	0	Х
VIA AÉREA	Presença de resposta mascarada	Δ	
(FONES)	Ausência de resposta não mascarada	PO P	X
	Ausência de resposta mascarada	A	

	Presença de resposta não mascarada	<	>
VIA ÓSSEA	Presença de resposta mascarada]]
(MASTÓIDE)	Ausência de resposta não mascarada	ž	M
	Ausência de resposta mascarada	Į.	J
	Presença de resposta	· v	
VIA ÓSSEA	Ausência de resposta	¥	
(FRONTE)	Presença de resposta mascarada	Т	Γ
	Ausência de resposta não mascarada	2	7
	Presença de resposta	Ø	≠
САМРО	Ausência de resposta	₽ <mark>Ø</mark>	ħ
LIVRE	Presença de resposta inespecífica		S
	Ausência de resposta inespecífica		}

Fonte: Adaptado da ASHA (1990).

Os símbolos audiométricos apresentados no Quadro I foram especificados para, independentemente do código de cores, diferenciar:

- a) orelha direita e orelha esquerda;
- b) condução aérea e condução óssea;
- c) limiares mascarados e limiares não mascarados;
- d) presença e ausência de resposta;
- e) tipo de transdutores (fone supra-aural ou de inserção, vibrador e alto-falante) utilizados para a apresentação do estímulo.

3.2 Resultado Audiológico

O resultado audiológico deve descrever a normalidade ou a perda auditiva (Andrade, 2022), ao proceder à comparação entre os limiares auditivos obtidos e os padrões de normalidade (Lopes; Munhoz; Bozza, 2015).

Nesse sentido, deve-se verificar se todos os limiares auditivos estão dentro do padrão de normalidade, de acordo com a classificação adotada, ou se há alteração de uma ou mais frequências.

Quando todos os limiares auditivos estiverem normais, devese mencionar o resultado "limiares auditivos dentro do padrão de normalidade", citando a referência adotada, conforme item 7.

Nos casos em que for identificada qualquer alteração auditiva, apenas os dados referentes à perda auditiva devem constar no resultado, descrevendo tipo, grau, configuração e lateralidade, de acordo com a literatura adotada.

a) Quanto ao tipo da perda auditiva

A classificação do tipo de perda auditiva tem por objetivo realizar o topodiagnóstico da alteração. Sugere-se a descrição com base em Silman e Silverman (1997), apresentada no Quadro 2.

Quadro 2 - Classificação do tipo de perda auditiva

Tipo de perda	Características
Perda auditiva condutiva	Limiares de via óssea menores ou iguais a 15 dB NA e limiares de via aérea maiores que 25 dB NA, com gap aéreo-ósseo maior ou igual a 15 dB
Perda auditiva neurossensorial	Limiares de via óssea maiores do que 15 dB NA e limiares de via aérea maiores que 25 dB NA, com gap aéreo-ósseo de até 10 dB
Perda auditiva mista	Limiares de via óssea maiores do que 15 dB NA e limiares de via aérea maiores que 25 dB NA, com gap aéreo-ósseo maior do que 10 dB

Fonte: Silman e Silverman (1997).

Para a classificação do tipo da perda auditiva, devem ser analisados os limiares auditivos testados e não a média de frequências.

b) Quanto ao grau da perda auditiva

Para a classificação da perda auditiva quanto ao grau, são encontradas diversas recomendações na literatura. Alguns autores classificam a perda auditiva com base na média dos limiares auditivos para as frequências de 500, 1.000 e 2.000 Hz, como pode ser observado nos Quadros 3 (Lloyd; Kaplan, 1978), 4 (Kaplan; Gladstone; Lloyd, 1993) e 5 (Davis, 1970), enquanto outros tomam por base a média das frequências de 500, 1.000, 2.000 e 4.000 Hz, como pode ser observado nos Quadros 6 (BIAP, 1996) e 7 (OMS, 2021). A escolha da classificação fica a critério do profissional. Entretanto, é imprescindível que o fonoaudiólogo indique qual foi a classificação adotada, desde que reconhecida e validada cientificamente.

A Organização Mundial de Saúde (OMS) publica, historicamente, relatório intitulado *World Report on Hearing*. É importante esclarecer que, até 2017, a classificação de graus de perda auditiva contida nesses relatórios considerava a média de 25 dB como padrão de normalidade e, a partir de 2017, esse padrão foi modificado para uma média menor que 20 dB (frequências de 500, 1.000, 2.000 e 4.000 Hz), levando em consideração as consequências funcionais na comunicação. A classificação apresentada pelo *report* mais atual da OMS, de 2021, está exposta no Quadro 7. Ao profissional que adotar a classificação da OMS, sugerese a busca periódica pelo relatório mais atual, considerando que é frequentemente atualizado pela OMS.

Não existe a classificação "grau normal". Quando um ou mais limiares auditivos estiver(em) alterado(s), mas a média dos limiares for igual ou inferior ao padrão de normalidade adotado, não se deve mencionar "perda auditiva de grau normal".

A seguir estão algumas classificações utilizadas e validadas cientificamente.

Quadro 3 - Classificação do grau da perda auditiva*

Denominação	Média tonal de 500 Hz, I kHz e 2 kHz
Audição normal	Menor que 26 dB NA
Perda auditiva de grau leve	26 a 40 dB NA
Perda auditiva de grau moderado	41 a 55 dB NA
Perda auditiva de grau moderadamente severo	56 a 70 dB NA
Perda auditiva de grau severo	71 a 90 dB NA
Perda auditiva de grau profundo	Maior que 90 dB NA

^{*} Nesse quadro de classificação, os autores não mencionam relação entre grau de perda auditiva e habilidade para compreender a fala.

Fonte: Lloyd e Kaplan (1978).

Quadro 4 - Classificação do grau da perda auditiva*

Denominação	Média tonal de 500 Hz, l kHz e 2 kHz
Audição normal	-10 a 15 dB NA
Perda auditiva de grau discreto	16 a 25 dB NA
Perda auditiva de grau leve	26 a 40 dB NA
Perda auditiva de grau moderado	41 a 55 dB NA
Perda auditiva de grau moderadamente severo	56 a 70 dB NA
Perda auditiva de grau severo	71 a 90 dB NA
Perda auditiva de grau profundo	91 dB NA ou maior

^{*} Nesse quadro de classificação, os autores não mencionam relação entre grau de perda auditiva e habilidade para compreender a fala.

Fonte: Kaplan, Gladstone e Lloyd (1993)

Salienta-se que não é possível estabelecer GRAU de perda auditiva considerando frequência isolada. Quando forem acometidas apenas frequências aue não componham a média (tritonal ou quadritonal, a depender do critério adotado), devem ser informadas somente as frequências alteradas, sem se mencionar grau. Ex.: perda auditiva em 6.000 Hz. Entretanto, se a perda auditiva acometer frequências que componham a média, o grau só poderá ser mencionado quando a média ultrapassar o padrão de normalidade adotado.

Quadro 5 - Classificação do grau da perda auditiva

Denominação	Média tonal de 500 Hz, I kHz e 2 kHz	Habilidade para compreender a fala
Audição normal	Menor ou igual a 25 dB NA	Sem dificuldade com fala fraca
Perda auditiva de grau leve	26 a 40 dB	Dificuldade somente com fala fraca
Perda auditiva de grau moderado	41 a 55 dB	Frequente dificuldade com fala normal
Perda auditiva de grau marcado* ou acentuado	56 a 70 dB	Frequente dificuldade com fala intensa
Perda auditiva de grau severo	71 a 90 dB	Só entende fala gritada/ amplificada
Perda auditiva de grau Maior que 90 dE profundo		Não entende a fala mesmo com amplificação

^{*} Tradução literal.

Fonte: Davis (1970).

Quadro 6 - Classificação do grau de perda auditiva

Denominação	Média tonal (500 Hz, I kHz, 2 kHz e 4kHz)	Características	
Audição normal	Menor ou igual a 20 dB NA	Sem dificuldade	
Perda auditiva de grau leve	21 a 40 dB NA	Percebe a fala com voz normal, mas tem dificuldade com voz baixa ou distante; a maioria dos ruídos familiares são percebidos	
Perda auditiva	Grau I: 41 a 55 dB NA	A fala é percebida se a voz for intensa; o sujeito	
de grau moderado	Grau II: 56 a 70 dB NA	entende melhor quando olha a pessoa que fala; alguns ruídos familiares ainda são percebidos	
Perda auditiva	Grau I: 71 a 80 dB NA	A fala é percebida se a voz for intensa e próxima	
de grau severo	Grau II: 81 a 90 dB NA	à orelha; percebe ruídos intensos	
	Grau I: 91 a 100 dB NA		
Perda auditiva de grau muito severo	Grau II: 101 a 110 dB NA	A fala não é percebida; somente os ruídos muito fortes são percebidos	
307010	Grau III: 111 a 120 dB NA*	Tortes são percebidos	
Perda auditiva total/Cofose	Maior que 120 dB NA	Não percebe nenhum som	

^{*} No documento original, consta o valor de 119 dB NA, mas foi adaptado, tendo em vista que o valor de 120 dB NA não era contemplado na classificação.

Fonte: Adaptado de Bureau International d'AudioPhonologie (BIAP, 1996).

O BIAP propõe uma regra para avaliar o impacto das perdas auditivas assimétricas (o link para acesso a essa regra está disponível nas referências).

Quadro 7 - Classificação do grau da perda auditiva*

Graus de perda auditiva	Média tonal de 500 Hz, I kHz, 2 kHz e 4 kHz	Desempenho auditivo em ambientes silenciosos	Desempenho auditivo em ambientes ruidosos
Audição normal	Menor que 20 dB	Nenhuma dificuldade em ouvir sons	Nenhuma ou mínima dificuldade em ouvir sons
Perda auditiva de grau leve	20 a menor que 35 dB	Não apresenta dificuldade em ouvir o que é falado	Pode apresentar dificuldade em ouvir o que é falado
Perda auditiva de grau moderado	35 a menor que 50 dB	Pode apresentar dificuldade em ouvir o que é falado	Apresenta dificuldade em participar de uma conversa
Perda auditiva de grau moderada- mente severo	50 a menor que 65 dB	Apresenta dificuldade em participar de uma conversa, mas pode ouvir voz em forte intensidade	Apresenta dificuldade em ouvir e participar de uma conversa

Perda auditiva de grau severo	65 a menor que 80 dB	Apresenta dificuldade em ouvir a maior parte de uma conversa; dificuldade para ouvir e compreender mesmo voz em forte intensidade	Apresenta extrema dificuldade em ouvir e participar de uma conversa
Perda auditiva de grau profundo	80 a menor que 95 dB	Apresenta dificuldade extrema em ouvir voz em forte intensidade	A fala não pode ser ouvida
Perda auditiva completa/ surdo	Maior ou igual a 95 dB	Não escuta conversa e a maioria dos sons ambientais	Não escuta conversa e a maioria dos sons ambientais
Perda auditiva unilateral	Menor que 20 dB na melhor orelha, 35 dB ou mais na pior orelha	Pode não apresentar dificuldade, a menos que o som esteja próximo da orelha com pior audição; pode apresentar dificuldade na localização sonora	Pode apresentar dificuldade em compreender a fala, participar de uma conversa e na localização sonora

^{*} A classificação adotada pela OMS (2021) segue as recomendações da Classificação Internacional de Funcionalidade (CIF) proposta pela OMS em 2001.

Fonte: Adaptado de OMS (2021).

O grau da perda auditiva deve se basear exclusivamente na média de limiares auditivos por via aérea de acordo com o critério adotado.

c) Quanto à configuração audiométrica

Esta classificação leva em consideração a configuração dos limiares auditivos de via aérea de cada orelha.

No Quadro 8, encontra-se a classificação de Silman e Silverman (1997), adaptada de Carhart (1945) e Lloyd e Kaplan (1978).

Quadro 8 - Critério para classificação da configuração audiométrica

Tipo de configuração	Características
Horizontal	Limiares alternando melhora ou piora de 5 dB por oitava
Ascendente	Melhora igual ou maior que 5 dB por oitava em direção às frequências altas
Descendente leve	Piora de 5 a 10 dB por oitava* em direção às frequências altas
Descendente acentuada	Piora de 15 a 20 dB por oitava em direção às frequências altas

Descendente em rampa	Curva horizontal ou descendente leve com piora maior ou igual a 25 dB por oitava em direção às frequências altas
Em U	Limiares das frequências extremas melhores que os das frequências médias com diferença maior ou igual a 20 dB
Em U invertido	Limiares das frequências extremas piores que os das frequências média, com diferença maior ou igual a 20 dB
Em entalhe	Curva horizontal com descendência acentuada em uma frequência isolada com recuperação na frequência subsequente

^{*} As oitavas de frequências são 250, 500, 1.000, 2.000, 4.000 e 8.000Hz.

Fonte: Silman e Silverman (1997 apud Carhart, 1945; Lloyd; Kaplan, 1978).

Entalhe audiométrico – Coles, Lutman e Buffin (2000) definem como entalhe audiométrico quando os limiares auditivos em 3 kHz e/ou 4 kHz e/ou 6 kHz são maiores que 10 dB se comparados com os limiares de 1 kHz ou 2 kHz e 6 kHz ou 8 kHz.

Curvas audiométricas que não se enquadram nas configurações descritas no Quadro 8 podem ser classificadas como traçado irregular, conforme Carhart (1945).

Consiste em infração ética assinar qualquer procedimento fonoaudiológico realizado por terceiros, ou solicitar ou permitir que outros profissionais assinem seus procedimentos.

d) Quanto à lateralidade

A audição pode ser classificada, de acordo com a lateralidade, em bilateral e unilateral.

e) Quanto à simetria

De acordo com a ASHA (2015), a perda auditiva pode ser caracterizada em relação à simetria em:

- Simétrica: a que possui o mesmo grau e a mesma configuração audiométrica em cada orelha.
- Assimétrica: a que possui grau e configuração audiométrica diferentes em cada orelha.

É dever do fonoaudiólogo descrever o resultado da avaliação audiológica.

3.3 Weber Audiométrico

O teste do Weber audiométrico é fundamental ao diagnóstico na audiometria clínica para verificar a presença de *gap* aéreo-ósseo, sendo mais eficaz para baixas frequências (Stach, 2010). Deve ser realizado em todas as frequências na intensidade de 15 dB acima do limiar de via óssea na frequência a ser testada (Portmann; Portmann, 1993), com o vibrador ósseo posicionado na linha média da fronte do paciente (Portmann; Portmann, 1993; Stach, 2010; Martin; Clark, 2012).

A lateralização para a orelha pior sugere a presença de perda auditiva condutiva ou mista com maior *gap* aéreo-ósseo nesta orelha. A lateralização para a orelha melhor sugere perda auditiva neurossensorial na pior orelha (Portmann; Portmann, 1993; Frota, 2003; Stach, 2010), conforme Quadro 9.

Quadro 9 - Interpretação do resultado do Weber Audiométrico

Weber Audiométrico		
Audição normal ou perdas auditivas simétricas	Não ocorre lateralização	
Perda auditiva condutiva unilateral	Ocorre lateralização para o lado da perda	
Perda auditiva neurossensorial unilateral	Ocorre lateralização para o lado normal	

Fonte: Martin e Clark (2012).

O resultado desse teste é dado em um gráfico separado do audiograma, conforme sugestão no Quadro 10 (Portmann; Portmann, 1993).

Quadro 10 - Sugestão de registro do resultado do Weber Audiométrico

	500 Hz	1.000 Hz	2.000 Hz	3.000 Hz	4.000 Hz	
OD						OE

Legenda:

- (lateralização para a direita)
- → (lateralização para a esquerda)
- (indiferente)

Fonte: Adaptado de Portmann e Portmann (1993).

Os laudos audiológicos emitidos de forma automática (feitos por sistemas informatizados) devem estar sempre baseados em literatura científica validada. Além disso, salienta-se que o fonoaudiólogo é responsável por todo e qualquer resultado que emita, inclusive os automáticos. Portanto, o profissional deve ficar atento e usar somente classificações preconizadas pela literatura.

3.4 Audiometria Vocal ou Logoaudiometria

A audiometria vocal ou logoaudiometria é um teste que avalia a habilidade do indivíduo para detectar e reconhecer a fala. Por meio do teste, é possível determinar o Limiar de Reconhecimento de Fala (LRF), o Limiar de Detecção de Voz (LDV) e o Índice (Percentual) de Reconhecimento de Fala (IPRF ou IRF). Entre esses testes, os resultados do IPRF podem ser classificados conforme descrito no Quadro II, como sugere Schoepflin (2012).

Quadro II - Classificação do IPRF ou IRF

Resultado de IPRF ou IRF	Classificação	
90 a 100%	Reconhecimento de fala dentro da normalidade	
78 a 88%	Discreta dificuldade de reconhecimento de fala	
66 a 76%	Moderada dificuldade de reconhecimento de fala	
54 a 64%	Acentuada dificuldade de reconhecimento de fala	
Abaixo de 52%	Profunda dificuldade de reconhecimento de fala	

Fonte: Schoepflin (2012).

3.5 Medidas de Imitância Acústica

As medidas de imitância acústica contribuem com informações sobre a mobilidade do sistema tímpano-ossicular e quanto à integridade da via auditiva.

São utilizadas na prática clínica fornecendo informações sobre a curva timpanométrica (timpanometria) e os reflexos acústicos (contra e ipsilaterais).

3.5.1 Timpanometria

Utilizada para avaliar o funcionamento e a integridade da orelha média, a timpanometria convencional é realizada com o tom de teste de 226 Hz. Para lactentes com até seis meses de idade, deve-se usar tom com frequência mais alta (1.000 Hz) (Kei et al., 2003; Silva et al., 2007; Emadi et al., 2016; Aithal; Kei; Aithal, 2022).

É importante que o profissional registre qual tom de frequência de sonda foi utilizado.

Para o resultado da timpanometria, sugerimos a classificação de Jerger, Jerger e Mauldin (1972), para sonda de 220 Hz, conforme Quadro 12.

Quadro 12 - Classificação do timpanograma

Tipo da curva	Definição	Valor de referência	
Tipo A	Tipo A Mobilidade normal do sistema tímpano-ossicular	Volume: 0,30 a 1,65 ml	
Tipo A		Pressão: 0 daPa a -100 daPa	
Tipo As (ou Ar)	Amplitude reduzida; baixa mobilidade do sistema tímpano- ossicular	Volume: abaixo de 0,30 ml Pressão: 0 daPa a -100 daPa	

Tipo Ad	Amplitude aumentada; hipermobilidade do sistema tímpano-ossicular	Volume: acima de 1,65 ml Pressão: 0 daPa a -100 daPa	
Тіро В	Ausência de mobilidade do sistema tímpano-ossicular	Não apresenta pico	
Tipo C	Pico deslocado para pressão negativa	Pressão inferior a -100 daPa Volume: variável	

Fonte: Jerger, Jerger e Mauldin (1972).

A British Society of Audiology (BSA, 2018) considera como normalidade o pico de pressão que ocorrer entre +50 daPa e -50 daPa.

Ainda são referidos na literatura outros dois tipos de curva timpanométrica. Segundo Carvallo e Sanches (2015), a curva Tipo D corresponde à curva com duplo pico de máxima admitância. Segundo Frazza et al. (2000), a curva timpanométrica pode, ainda, apresentar um pico pressórico positivo, a curva do Tipo P.

O fonoaudiólogo tem autonomia para escolher o padrão de normalidade que desejar, desde que seja validado cientificamente e mencionado no resultado da avaliação.

3.5.2 Reflexo Acústico

A pesquisa de Reflexo Acústico é realizada a partir de um estímulo de forte intensidade, de forma que possibilite a contração dos músculos da orelha média, principalmente o estapédio (Jerger, 1970). A pesquisa do limiar do reflexo pode ser realizada de forma ipsilateral (no mesmo lado em que foi apresentado o estímulo) ou contralateral (no lado oposto ao qual o estímulo foi apresentado) à orelha testada (Pereira; Anastasio, 2015).

Quadro 13 - Classificação do reflexo acústico contralateral

Presente	Presente em níveis normais	Reflexo desencadeado entre 70 e 100 dB acima do limiar da via aérea aferente
	Presente e diminuído	Diferença menor que 70 dB entre o limiar de via aérea e o reflexo acústico contralateral
	Presente e aumentado	Diferença maior que 100 dB entre o limiar de via aérea e o reflexo acústico contralateral
Ausente	Reflexo não desencadeado até a saída máxima do equipamento	

Fonte: Adaptado de Jerger, Jerger e Mauldin (1972).

Quando as medidas de imitância acústica forem registradas pelo equipamento por meio de impresso térmico, estas deverão ser anotadas na ficha de avaliação audiológica.

4 AUDIOLOGIA INFANTIL

A avaliação audiológica infantil baseada no princípio de *cross-check* é composta por procedimentos eletroacústicos, eletrofisiológicos e comportamentais, realizados conforme idade cronológica, nível cognitivo e desenvolvimento neuropsicomotor da criança a ser avaliada.

Entre alguns métodos, podemos citar: observação do comportamento auditivo para sons instrumentais e sons de fala calibrados e não calibrados; audiometria de reforço visual; audiometria lúdica condicionada; e medidas eletroacústicas e eletrofisiológicas da audição, como imitanciometria, emissões otoacústicas evocadas e potenciais evocados auditivos.

O diagnóstico audiológico na população infantil nunca deve ser definido pelo resultado de um único exame, seguindo-se o princípio do cross-check.

Do resultado da avaliação

Em virtude das especificidades encontradas na população infantil, o resultado da avaliação auditiva na criança pode ser detalhado em formato de relatório, contemplando tanto dados qualitativos quanto quantitativos da avaliação, a saber:

- número de sessões necessárias para a finalização da avaliação;
- descrição do comportamento e qualidade da interação da criança com o avaliador;
- dados relevantes sobre a fala e compreensão da criança;
- exposição dos resultados obtidos em cada avaliação realizada;
- resultado quanto a tipo, grau, configuração, lateralidade e simetria de perda auditiva, quando possível;
- orientações e encaminhamentos necessários à equipe multiprofissional;
- outras informações que o fonoaudiólogo julgar relevantes.

Para a classificação de grau de perda auditiva em crianças, recomenda-se o critério de Northern e Downs (2005), descrito no

É imprescindível a realização de procedimentos comportamentais para a avaliação da função auditiva infantil.

Quadro 14, ou o critério da OMS (2020), descrito no Quadro 15.

Quadro 14 - Classificação do grau de perda auditiva para crianças

Classificação	Média tonal de 500 Hz, I kHz e 2 kHz	O que consegue ouvir sem amplificação		
Audição normal	Menor ou igual a 15 dB	Todos os sons da fala		
Perda auditiva de grau discreto	16 a 25 dB	Sons das vogais ouvidos claramente; pode perder sons de consoantes surdas		
Perda auditiva de grau leve	26 a 30 dB	Ouve apenas alguns sons da fala		
Perda auditiva de grau moderado	31 a 50 dB	Quase nenhum som da fala no nível de conversação normal		
Perda auditiva de grau severo	51 a 70 dB	Nenhum som da fala no nível da conversação normal		
Perda auditiva de grau profundo	Maior ou igual a 71 dB	Nenhum som da fala ou outros sons		

Fonte: Adaptado de Northern e Downs (2005).

Quadro 15 - Classificação do grau da perda auditiva para crianças

Classificação	Média tonal de 500 Hz, I kHz, 2 kHz e 4kHz	Desempenho auditivo			
Audição normal	Menor que 20 dB	Nenhuma dificuldade para ouvir sons			
Perda auditiva de grau leve	20 a menor que 35 dB	Pode ter dificuldade para ouvir a fala em ambientes ruidosos			
Perda auditiva de grau moderado	35 a menor que 50 dB	Pode ter dificuldade para acompanhar uma conversa, especialmente em ambientes ruidosos			
Perda auditiva de grau moderadamente severo	50 a menor que 65 dB	Tem dificuldade em acompanhar conversas, especialmente em ambientes ruidosos; em geral, consegue ouvir vozes em intensidade elevada sem dificuldade			
Perda auditiva de grau severo	65 a menor que 80 dB	Não consegue acompanhar conversas e pode ter dificuldade de ouvir vozes em intensidade elevada; tem extrema dificuldade para ouvir e acompanhar conversas em ambientes ruidosos			
Perda auditiva de grau profundo	80 a menor que 95 dB	Tem extrema dificuldade para ouvir vozes em intensidade elevada			
Perda auditiva completa/surdez	Maior ou igual a 95 dB	Não consegue ouvir a fala e a maior parte dos sons ambientais			

Fonte: OMS (2020).

Caso seja necessário o uso do mascaramento, o profissional deve:

- indicar a intensidade utilizada para o teste de via aérea, via óssea e vocal, conforme o caso;
- adotar os símbolos apropriados para os limiares de via aérea e via óssea obtidos com mascaramento, conforme Quadro I.

5 CONSIDERAÇÕES ACERCA DA AUDIOMETRIA TONAL DE ALTAS FREQUÊNCIAS (ATF)

Considerando que a audição humana encontra-se em uma faixa de frequência de 20 a 20.000 Hz, e que, na audiometria tonal limiar, um número limitado de frequências é avaliado (250 Hz a 8.000 Hz), vários autores sugerem a realização da audiometria de altas frequências, a fim de investigar os limiares auditivos das frequências acima de 8.000 Hz.

Na prática clínica, a audiometria de altas frequências possibilita a identificação precoce das alterações auditivas causadas por fatores como idade, ototoxicidade, exposição a níveis de pressão sonora elevados (Rodríguez-Valiente et al., 2014; Lopes; Munhoz; Bozza, 2015), assim como para investigação complementar em pessoas com queixa de zumbido (Lopes; Munhoz; Bozza, 2015) e desordens genéticas

(Rodríguez-Valiente et al., 2014). Além disso, a audiometria de altas frequências é um importante instrumento de monitoramento auditivo.

Para a descrição dos resultados, devem ser mencionados o equipamento utilizado, o tipo de transdutor e o estímulo, assim como a classificação utilizada, uma vez que não existe ainda uma padronização universal para esses limiares, já que há variabilidades em relação a idade e sexo.

Rodríguez-Valiente et al. (2014) apresentam valores médios de limiares auditivos na audiometria de altas frequências, considerando diferentes faixas de idade (Quadro 16). Limiares superiores aos referenciados no quadro a seguir podem ser considerados alterados de acordo com a faixa etária do paciente. Dessa forma, o resultado da avaliação deve apontar as frequências cujos limiares estejam alterados.

Quadro 16 - Valores médios de limiares auditivos nas altas frequências por faixa de idade

Faixa	9	I0	II,2	12,5	I4	l6	18	20
etária	kHz	kHz	kHz	kHz	kHz	kHz	kHz	kHz
Menor ou igual a 19 anos	17,78 dB	19,06 dB	20,17 dB	25,06 dB	28,78 dB	38,11 dB	46,8 dB	65 dB
20-29 anos	16,6	20,71	17,39	12,5	26,58	24,25	62,93	84,62
	dB	dB	dB	dB	dB	dB	dB	dB
30-39 anos	23,89 dB	27,2 dB	24,69 dB	26,98 dB	40,99 dB	51,63 dB	88 dB	91,23 dB
40-49 anos	23,13 dB	27 dB	27,2 dB	40,4 dB	55,2 dB	69 dB	97,2 dB	97dB
50-59 anos	36,43	50,71	59,11	54,65	89,31	82,95	108,78	105
	dB	dB	dB	dB	dB	dB	dB	dB
60-69 anos	52,34	65,18	72,68	79,74	106,94	101,5	115,78	108,82
	dB	dB	dB	dB	dB	dB	dB	dB
Maior ou igual a 70 anos	80,35 dB	91,05 dB	92,44 dB	92,28 dB	111,38 dB	105,44 dB	II8 dB	II3 dB

Fonte: Rodríguez-Valiente et al. (2014).

6 CONSIDERAÇÕES ACERCA DA AUDIOMETRIA NA SAÚDE DO TRABALHADOR

A audiometria na saúde do trabalhador deve ser realizada utilizando-se os mesmos critérios da audiometria clínica. Entretanto, devem ser considerados também, obrigatoriamente, para a análise dos resultados da audiometria na saúde do trabalhador, os parâmetros preconizados pela Portaria SEPRT n.º 6.734, de 9 de março de 2020.

Na ficha do exame audiométrico do trabalhador, devem constar todas as informações exigidas no item 3.5 do Anexo II da NR-7.

Na identificação ou suspeita de perda auditiva relacionada ao trabalho, é compulsória a sua notificação no Sistema de Informação de Agravos de Notificação (SINAN), com vistas à vigilância. Essa obrigatoriedade está prevista na Lei nº 6.259, de 30 de outubro de 1975 e na Portaria do Ministério da Saúde 104/2011 que, em seu artigo 7°, estabelece o seguinte:

A notificação compulsória é obrigatória a todos os profissionais de saúde: médicos, enfermeiros, odontólogos, médicos veterinários, biólogos, biomédicos, farmacêuticos e outros no exercício da profissão, bem como os responsáveis por organizações e estabelecimentos públicos e particulares de saúde e de ensino, em conformidade com os arts. 7° e 8°, da Lei n° 6.259, de 30 de outubro de 1975.

O fonoaudiólogo tem plena autonomia para inserir no laudo ocupacional os aspectos clínicos que considerar pertinentes, podendo realizálo de forma similar ao laudo do exame clínico. É direito do trabalhador o acesso aos seus exames audiométricos conforme o Código de Ética da Fonoaudiologia e a Norma Regulamentadora n.º 7.

7 LAUDO AUDIOLÓGICO

O fonoaudiólogo é o profissional capacitado para avaliar a audição, descrever o exame/avaliação realizado, bem como emitir o laudo audiológico, com tipo (quando a via óssea for realizada), grau da perda auditiva (quando a média dos limiares estiver alterada, de acordo com a classificação adotada) e configuração audiométrica (sempre que possível), além de outras informações que julgar relevantes.

É dever do fonoaudiólogo elaborar relatórios, resultados de exames, pareceres e laudos fonoaudiológicos para o cliente ou seu(s) representante(s) legal(is), inclusive nos casos de encaminhamento ou transferência com fins de continuidade do tratamento ou serviço, na alta ou por simples desistência.

7.1 Audiometria Tonal

É importante sempre citar na ficha audiológica os autores nos quais se baseou para descrever o resultado audiológico, podendo ser em nota de rodapé, quadros pré-impressos ou conforme os exemplos subsequentes. Lembre-se de que o grau da perda auditiva poderá mudar de acordo com a referência escolhida.

a) Limiares auditivos normais

Exemplo: Limiares auditivos dentro do padrão de normalidade (Referência, Ano).

b) Perda auditiva em que seja possível determinar tipo, grau e configuração

Exemplos:

- Perda auditiva do tipo XXX, grau XXX e configuração XXX bilateralmente (Referência, Ano).
- Perda auditiva do tipo XXX à direita e XXX à esquerda, de grau XXX à direita e XXX à esquerda e configuração XXX à direita e XXX à esquerda (Referência, Ano) OU Perda auditiva do tipo XXX, grau XXX e configuração XXX à direita e tipo XXX, grau XXX e configuração XXX à esquerda (Referência, Ano).

Em documentos referentes a entrega de rastreios/triagens, exames, hipóteses ou conclusões diagnósticas e laudos das avaliações, quando por meio físico, deverá constar assinatura do fonoaudiólogo com carimbo e n.º do CRFa. Na ausência eventual do carimbo, informar o nome completo, seguido do número do seu registro de inscrição no CRFa e assinatura.

c) Perda auditiva em frequências isoladas

- Perda auditiva em frequências em que não se pode determinar o tipo (quando há alteração de uma ou mais frequências em que não se realiza via óssea: 250 Hz, 6 kHz e 8 kHz) nem o grau (quando há alteração de uma ou mais frequências, no entanto, a média - tritonal ou quadritonal, a depender do critério adotado- está dentro do normal).

Exemplo: Perda auditiva na(s) frequência(s) de XX e XX (Referência, Ano).

 Perda auditiva em frequências em que se pode determinar o tipo da perda auditiva (frequências em que é possível testar via aérea e via óssea), porém, não é possível determinar o grau (quando há alteração de uma ou mais frequências, no entanto, a média — tritonal ou quadritonal, a depender do critério adotado – está dentro do normal). Exemplos: Perda auditiva do tipo XXX na frequência de XXX **OU** Perda auditiva do tipo XXX a partir da frequência de XXX (Referência, Ano).

Fica facultado ao fonoaudiólogo o uso do Código Internacional de Doenças (CID), da Classificação Internacional de Funcionalidade (CIF) ou de outros códigos de diagnóstico, científica ou legalmente reconhecidos, como fonte para enquadramento de diagnóstico.

7.2 Medidas de Imitância Acústica

Curva timpanométrica e reflexos acústicos

Curva timpanométrica tipo XXX, com reflexos acústicos contralaterais/ipsilaterais presentes (ou ausentes) nas frequências XXX na(s) orelha(s) XXX (Referência, Ano).

O termo "rebaixamento auditivo" não pode ser utilizado nos laudos audiológicos.

8 REFERÊNCIAS

AITHAL, S.; KEI, J.; AITHAL, V. High frequency (1000 Hz) tympanometry in six-month-old infants. **International Journal of Pediatric Otorhinolaryngology**, v. 160, sep. 2022.

AMARAL, M. I. R.; MOMENSOHN-SANTOS, T. M. Audiometria tonal liminar e de altas frequências. *In*: SCHOCHAT, E. et al. (ed.). **Tratado de Audiologia**. 3. ed. Santana de Parnaíba: Manole, 2022, p. 97-111.

AMERICAN SPEECH-LANGUAGE ASSOCIATION (ASHA). **Audiometric symbols** [Guidelines], 1990. Disponível em: http://www.asha.org/policy/GL1990-00006/. Acesso em: 19 jan. 2023.

AMERICAN SPEECH-LANGUAGE ASSOCIATION (ASHA). Configuration of Hearing Loss, 2015. Disponível em: https://www.asha.org/public/hearing/Configuration-of-Hearing-Loss/. Acesso em: 6 fev. 2020.

ANDRADE, W. T. L. Audiometria Tonal e Vocal. *In*: FEITOSA, A. L. F.; DEPOLLI, G. T.; ANDRADE, W. T. L. **Mapas Conceituais em Fonoaudiologia**: Audiologia. Ribeirão Preto: Booktoy, 2022, p. 45-59.

BRASIL. Lei n.º 6.959, de 30 de outubro de 1975. Dispõe sobre a organização das ações de Vigilância Epidemiológica, sobre o Programa Nacional de Imunizações, estabelece normas relativas à notificação compulsória de doenças, e dá outras providências. **Diário Oficial da União**, Brasília, 1975. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/l6259.htm. Acesso em: 31. ago. 2023.

BRASIL. Lei n.º 6.965, de 9 de dezembro de 1981. Dispõe sobre a regulamentação da profissão de Fonoaudiólogo, e determina outras providências. **Diário Oficial da União**, Brasília, 1981. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/l6965.htm. Acesso em: 19. jan. 2023.

BRASIL. Ministério da Saúde. Portaria nº 104, de 25 de janeiro de 2011. Define as terminologias adotadas em legislação nacional, conforme o disposto no Regulamento Sanitário Internacional 2005 (RSI 2005), a relação de doenças, agravos e eventos em saúde pública de notificação compulsória em todo o território nacional e estabelece fluxo, critérios, responsabilidades e atribuições aos profissionais e serviços de saúde. **Diário Oficial da União**, Brasília, 2011. Disponível em: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt0104_25_01_2011.html Acesso em: 31. ago. 2023.

BRASIL. Ministério da Economia. Secretaria Especial de Previdência e Trabalho. Portaria SEPRT n.º 6.734, de 9 de março de 2020. Aprova a nova redação da Norma Regulamentadora nº 07 - Programa de Controle Médico de Saúde Ocupacional - PCMSO. (Processo nº 19966.100069/2020-12). **Diário Oficial da União**, Brasília, 2020. Disponível em: https://www.in.gov.br/web/dou/-/portaria-n-6.734-de-9-de-marco-de-2020-247886194. Acesso em: 5. dez. 2022.

BRITISH SOCIETY OF AUDIOLOGY. **Recommended Procedure**: Tympanometry, 2018. Disponível em: https://www.thebsa.org.uk/wp-content/uploads/2013/04/OD104-35-Recommended-Procedure-Tympanometry-.pdf. Acesso em: 19 jan. 2023.

BUREAU INTERNATIONAL D'AUDIOPHONOLOGIE. **BIAP Recommendation 02/I**: Audiometric Classification of Hearing Impairments, 1996. Disponível em: https://www.biap.org/en/recommandations/recommendations/tc-02-classification/213-rec-02-I-en-audiometric-classification-of-hearing-impairments/file Acesso em: 10 jan. 2023.

CARHART, R. Classifying audiograms: an improved method for classifying audiograms. **Laryngoscope**, v. 55, p. 640-62, 1945.

CARVALLO, R. M. M.; SANCHES, S. G. G. Medidas de imitância acústica. *In*: BOÉCHAT, E.M. et al. **Tratado de Audiologia**. 2. ed. São Paulo: Santos, 2015, p. 57-67.

COLES, R. R.; LUTMAN, M. E.; BUFFIN, J. T. Guidelines on the diagnosis of noise-induced hearing loss for medicolegal purposes. **Clinical Otolaryngology and Allied Sciences**, n. 25, p. 264-273, 2000.

CONSELHO FEDERAL DE FONOAUDIOLOGIA. Código de Ética da Fonoaudiologia. Brasília, 2021. Disponível em: https://www.fonoaudiologia.org.br/Codigo_de_Etica/2021/12/codigo-de-etica-fonoaudiologia-2021.pdf. Acesso em: 19 jan. 2023.

CONSELHO FEDERAL DE FONOAUDIOLOGIA. Resolução CFFa nº 609, de 26 de março de 2021. Dispõe sobre a regulamentação de normas para o registro profissional no âmbito dos Conselhos Regionais de Fonoaudiologia e dá outras providências. Disponível em: https://www.fonoaudiologia.org.br/resolucoes/resolucoes_html/CFFa_N_609_21. htm. Acesso em: 23 ago. 2023.

DAVIS, H. Hearing handicap, standards for hearing, and medicolegal rules. *In*: DAVIS, H.; SILVERMAN, S. R. (ed.). **Hearing and Deafness**. 3. ed. New York: Holt, Rinehart and Winston, 1970, p. 253-279.

EMADI, M. et al. High frequency tympanometry (1,000 Hz) for neonates with normal and abnormal transient evoked otoacoustic emissions. **Journal of Audiology & Otology**, v. 20, n. 3, p. 153-157, 2016.

FRAZZA, M. M. et al. Imitanciometria. *In*: MUNHOZ, M. S. L. et al. **Audiologia Clínica**. São Paulo: Atheneu, 2003, p. 85-101.

FROTA, S. Avaliação básica da audição. *In*: FROTA, S. **Fundamentos em Fonoaudiologia**: Audiologia. 2. ed. Rio de Janeiro: Guanabara Koogan, 2003, p. 41-60.

INTERNATIONAL BUREAU FOR AUDIOPHONOLOGY. **BIAP Recommendation 02/I**: Audiometric Classification of Hearing Impairments, 1996. Disponível em: https://www.biap.org/en/recommandations/recommendations/tc-02-classification/213-rec-02-I-

en-audiometric-classification-of-hearing-impairments/file. Acesso em: 7 fev. 2020.

JERGER, J. Clinical experience with impedance audiometry. **Archives of Otolaryngology**, v. 92, n. 4, p. 311-324, out. 1970.

JERGER, J.; JERGER, S.; MAULDIN, L. Studies in impedance audiometry. Normal and sensorineural ears. **Archives of Otolaryngology**, v. 96, p. 513-23, 1972.

KAPLAN, H.; GLADSTONE, V. S.; LLOYD, L. L. **Audiometric interpretation**: manual of basic audiometry. 2. ed. Massachusetts: Allyn and Bacon, 1993.

KEI, J. et al. High-frequency (1000 Hz) tympanometry in normal neonates. **Journal of the American Academy of Audiology**, v. 14, n. 1, p. 20-28, 2003.

LLOYD, L. L.; KAPLAN, H. **Audiometric interpretation**: a manual of basic audiometry. Baltimore: University Park Press, 1978.

LOPES, A. C.; MUNHOZ, G. S.; BOZZA, A. Audiometria tonal liminar e de altas frequências. *In*: BOÉCHAT, E. M. et al. **Tratado de Audiologia**. 2. ed. São Paulo: Santos, 2015, p. 57-67.

MARTIN, F. N.; CLARK, J. G. **Introduction to Audiology**. 11. ed. New Jersey: Person Education, 2012.

NORTHERN, J. L.; DOWNS, M. P. **Audição na Infância**. 5. ed. Rio de Janeiro: Guanabara Koogan, 2005.

ORGANIZAÇÃO MUNDIAL DE SAÚDE. **Basic ear and hearing care resource**, 2020. Disponível em: https://www.who.int/publications/i/item/basic-ear-and-hearing-care-resource. Acesso em: 11 jan. 2023.

ORGANIZAÇÃO MUNDIAL DE SAÚDE. **World report on hearing**, 2021. Disponível em: https://www.who.int/publications/i/item/9789240020481. Acesso em: 10 jan. 2023.

PEREIRA, A. E. L.; ANASTASIO, A. R. T. Reflexo acústico: aplicações clínicas. *In*: BOÉCHAT, E. M. et al. **Tratado de Audiologia**. 2. ed. São Paulo: Santos, 2015, p. 89-94.

PORTMANN, M.; PORTMANN, C. **Tratado de Audiometria Clínica**. São Paulo: Roca, 1993.

RODRÍGUEZ-VALIENTE, A. et al. Extended high-frequency (9-20 kHz) audiometry reference thresholds in 645 healthy subjects. **International Journal of Audiology**, n. 53, p. 531-545, 2014.

SCHOEPFLIN, J. R. Back to Basics: Speech Audiometry. **Audiology Online**, 2012. Disponível em: https://www.audiologyonline.com/articles/back-to-basics-speech-audiometry-6828. Acesso em: 10 jan. 2023.

SILMAN, S.; SILVERMAN, C. A. Basic audiologic testing. *In*: SILMAN, S.; SILVERMAN, C. A. **Auditory diagnosis**: principles and applications. San Diego: Singular Publishing Group, 1997, p. 44-52.

SILVA, K. A. L. et al. Tympanometry in neonates with normal otoacoustic emissions: measurements and interpretation. **Brazilian Journal of Otorhinolaryngology**, v. 73, n. 5, p. 633-639, sep./oct. 2007.

STACH, B. A. **Clinical Audiology**: an introduction. 2. ed. New York: Delmar, 2010.

Sistema de Conselhos de Fonoaudiologia

